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A construction on the basis of an asymptotic method is given in fl and 21 for the two-dimen- 
sional equations of the theory of thin elastic plates, where the elasticity theory equations 
in terms of stresses and the Hooke’s law relationships are taken as initial [startind equa- 
tions. It was assumed in investigating the internal state of stress(*) in [l and 21 that the 
dieplacements and stresses have definite orders, which was confirmed by the case of ben- 
ding and symmetric deformation of a homogeneous plate. But the state of stress in a relative- 
ly weak elastic layer compressed between stiffer layers does not fit in within the framework 
of this assumption. The need to investigate such states of stress arises in examining weak 
layers in multilayer plates. 

An investigation of the internal state of stress of a thin layer is conducted herein by the 
method of asymptotic integration of the Lank equations, whereby no assumptions are made 
on the order of the surface loading, and it is just considered that the displacements in the 
plane of the layer is an order less than the displacements out of its plane. This allows a 
more general asymptotic solution of tbe equations of elasticity theory to be obtained for the 
internal state of stress than in [I and 21, and in a form suitable to describe the behavior of 
a homogeneous plate subjected to arbitrary surface loading, as well as the behavior of a 
layer compressed by stiffer layers (weak layers in multilayer plates). 

Let us note that a complete investigation of the internal state of stress of a thin plate 
provides for both tbe’construction of the differential equations, and for the formulation of 
the appropriate boundary conditions 131, This latter is associated with the study of the sta- 
tes of stress of boundary layers; they are not considered herein. Hence, the conducted in- 
vestigations concern only the question of obtaining the differential equations of the internal 
state of stress. 

1. Let us assume that the coordinate plane a, e of an orthogonal curvilinear coordinate 
system is parallel to the mi-ddle plane of the plate. We take the Lam6 equations in a form 
explicitly indicating that its coefficients are independent of the elastic modulus E are 
expressed only in terms of the Poisson coefficient V. 
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Here ua, UB) u,. are components of the displacement vector, and Ha, HP are Lami pale 

ameters (*I. The symbol (U p) means that there is another relationship obtained by inter- 
changing the u and @. 

Let us introduce the nondimensional quantities 

Ucz % T 
vu=- h ’ 

up= - h ’ I,=x (1.2) 
Here 2h is the layer thickness, 1 the characteristic dimension of the deformation. Let 

us assume the relative layer thickness e = h/l to be small. 

We seek the solution of the system of equations obtained from (1.1) by passing to the 
nondimensional variables (1.2), as 

v, = e,“+’ 2 &FQ (a$), uy = E Xx Y 
e’c(S) 

(1.3) 
s=o s=o 

If (1.3) is substituted into the Lam6 equations transformed to nondimensional form, and 
terms in identical powers of E are equated to zero, we then obtain the following Eqs. to 
determine ud”), v a’ ‘1, u,,(*j : 

1 1 
azu,(s) 1 a%7_7a(s) 

2(1--v) M, &ag -Tag?= 

l-av-ag”= - 

+_LH"- 
av,(s-2) 

aq ffa aq 1 
The right sides of these equations are expressed in terms of the (S - 2)-th approxima- 

tion, which should be considered known in determining the s-th approximation. Eqs. (1.4) 
can be integrated with respect to 5, resulting in the solution 

where 
k=O 

s , if 
r= 

s -1, if 

The quantities ~2’. vfi, and ~~2 

quantities indicates the power of (, for 
ficients of 5” in (1.5) are connected by 

(1.5) is substituted into (1.4) and terms 
dependences are 

for k >, 1 

kc0 

s - is even 

s - is odd (1.6) 

are functions just of 5, 7; the subscript k on these 

which this quantity is a factor in (1.5). The coef- 
differential dependence6 which can be obtained if 

with identical powers of 5 are equated to zero. These 

*l In [2] cited above, the H, HP denote quantities reciprocal to the Lam6 parameters. 
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We moreover obtain 

The relationships (1.7) are of recurrent nature; they permit determination of ~22, 
(for k >,3) and v?& (for k 321 in terms of the (s - 2)-th approximation. 

VP 

2. Let as determine the stresses corresponding to the displacements (1.3). If expres- 
sions for the strain components are substituted in the Hooke’e law relationship, and the 
transformation is made to nondimensional quantities (1.2), we then obtain 

1 1 
-uaa==e 
E (I+ ,;;f - Zv) H,HB ~ ’ $ Ffgva) + & (H,ug)] + 1 

Substituting the expansions (1.3) into these relationships, and collecting terms with 
identical powers of a, we have 

1 
_;,6aa = 
2% 

#p2 e%,,(” (a@). 

S=O 

1 
y bay =: d-1 -jJ AsaY (0). 

s==o 

$uaa = axt2 x Esuagis) 

s-0 

1 
E% - 

8x+2 
z 
s=o 

where 
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dv (s) 
6 (J)= 

1 

i 

1 au,(s) = 
a-f 2(1+Y) H,aE+ ag 

1 

’ (‘)= (1 +);I -2%‘) H,HB YY c j& (f$&@)) + + 

l-v au b+z1 

+ (1 fv)(l -2v) 
Y 

% 

(@) 

(H,VP @)) + 
1 

Let us substitute (1.5) in the obtained relationships, and let us combine terms in iden- 
tical powers of 5. We hence obtain 

r+1 r+1 

Qacr(s) = 2 Lp3,,fss) (af3), 6@(@ = =+J &&) (2.5) 
k=O k=O 

bay(S) = ;i: <” 5&? 

r+1 

(a@, 5uu(S) = x 6” Qu$) (23) 

b=O k=O 

Here r is determined in conformity with (1.6). For the quantities with subscript k in (2.5) 
and (2.6) we have 

63 = 
1 

(1 + $1 - 2v) HmHB I & (fQ’ork(s)) + 6 (H&k(s))] + 

+ 
l-v 

(1 + v) (I _ 2v) (k + 1) v$21 
There are the following dependences 

+q [; (I-I&?) + & (f&6&)) j + @ + 1) 6yy3+1 = 0 (2.9) 

between the quantities a,,$) , ub,gb”), o&*), oyyk(‘), cro_,,k(‘)and ~p,,k(*), which are 

functions of 5 and 7. 

These dependenoes are easily obtained if the equilibrium equations in the stresses are 
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If we transform to the nondimensional variables [, 7 and [in these equations, and take 
account of (2.21, (2.5) and (2.6), we then obtain (2.8) and (2.9). Let us note that if all the 
quantities in (2.8) and (2.91 are replaced by their expressions (2.71, it is easy to see that 
these relationships are satisfied identically. 

3. Let us consider a homogeneous plate subjected to an arbitrary surface loading. The 

boundary conditions on the upper (L= r+l and lower ([= <& planes are 

d 4x= a. z *(CL, 8) {aB). cyu = z,* (% 8) for s = & (3.1) 

Conditions (3.11 should be satisfied for the first nonzero members of the expansion (2.3) 
which we shaI1 denote by so, i.e., for [= <+, we have the conditions 

&$ctl+S,O ar(sJ) = z * 
(w%. 

~extz+s'a (so) = r f 
a YY Y (3.2) 

oay@) = 0 (a@)* o YY (S) =I 8 for s>so (3.31 

Let us show that su = 2, i.e., the first two members in (2.31 vanish. 

Let us assume first that s ,, = 0, and let us elucidate the possibility of satisfying condi- 

tions (3.2). From (1.31, (1.51, (2.21, (2.31, (2.5), (2.6) it follows that for so = 0 in zero-th 
approximation 

U (0) -_ * (0) _c @ (0) 
a - a0 1 al f=9), VY 

(0) = oyW) (3.4) 

d ar+ to) = csaap + L&,(10) (a@)* 5@(o) = Is co) + I;baq(P) a30 

a (0) - ($ (0) 
a-v aye (aL% 6 

YY 
(0) zzz Cl $j@ + @,,y (3.5) 

Six arbitrary functions v#), ~a$‘), “,,o(‘), oc,$‘) *@ yo 
(3.41 and (3.51. The quantities oay&O), OP~~O) and oyyl(O P 

(0) , andcryyhO) enter into 

are connected by means of re- 

lationship (2.9) with k = 0. 
Hence, the boundary conditions (3.21 may be satisfied only if the conditions 

z +zz (z ‘a- (M) (3.6) 

+$- [$ ($&+2 + 6 W&,+1] = - & fz,+ - xy-l 

are imposed on the surface loading. 

But by assumption the loading acting on the plate is arbitrary. Eliminating from consid- 
eration the particular case of a surface loading subjected to the conditions (3.61, we arrive 
at the deduction that it is impossible to satisfy the conditions (3.2) for so = 0. Moreover, 

“e uaofo), ~a&u) and try0 f”) remain undetermined. On this basis we conclude that so f 0, 

t.e,, the first members in (2.31 should vanish. 

NOW, let us assume that so = 1. Then the quantities of the zero-th approximation are: 

(0) 
2fa ) “0 

W, 1) W, c ((0, c W, c (0) 
Y 5LoL &3 aB ’ GczY (l’, 6@,(l)and oyy(t) 

As before, (3.41 holds for the first six of these, and we have for the last three 

o (‘)_.-c (1) 
‘XY aye (@)P c (l)zzo 

YY yYF) + 1;6Yu(:) (3.7, 

Six arbitrary functions 

are contained in (3.4) and (3.71. The quantity ~&r$t is connected to crkl,o and gy$o by re- 

lationship (2.91 with k = 0. Hence, the boundary conditions (3.2) may be satisfied again only 
if the surface loading is subject to conditions (3.6). For so = 1 the v~J, u,&u) and u$$ 

also remain ancertain. On the basis of all this it is clear that so f 1, i.e., the second mem- 
bers in (2.3) also vanish. 
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Now let us show that arbitrary conditions with <= & may be satisfied by setting so = 2. 

The quantities 

v (O), *B 
(0)) 2, (0) (0) (0) 

OL Y * OCCZ I %B * %I CO), 0 (2) 
w I *by (a) (2) 

and Qyy 

refer to the zero-th approximation for su = 2. As before, we have (3.4) for the first six qaan- 

tities, and for the last three 

d 
47 

(2) = Gay(oz) Jr r;G,,‘,“’ + po,,y (a.31 

c (2)= Q 
77 

(2) + 56 
YYO 

(2) + @sYYp + g3Quu!J2) 
YYI 

(3.8) 

Six arbitrary functions u&‘i, v “b , t@ , ~$?y)u, b C&L and &Go enter (3.4) and (3.8). 

Substituting (3.8) into (3.2)‘ we obtain six equations in six arbitrary functions. We can elim- 

inate,ap)o, Q& and Q$$, 

eJ, t&l& ‘00’. 

from these equations and obtain three differential equations in 

w e consider this in greater detail in the next Section, but we note here 

that if vhoo), ub$and v!$ are taken as the solution of the mentioned differential equations 

then conditions (3.2) can be satisfied for so = 2. Therefore, SO = 2; this means that the ex- 

pansions (2.3) start with the terms 

en+s a(a) 
@Y' 

p3 &a) 
PY' 

exi4 and CT!! 

respectively, and the previous terms of the expansions vanish, that is 

a (0) E CJ 0) = () (=3)* d 
a-t a-r 

(0) = Qyufl) I= 0 7-f (3.9) 

If (2.7) is t&en into account and also the relationship (2.9) with k = 0, it then follows 
from (3.9) that for s = 0, 1 

(3.10) 

(3.11) 

The relationships (3.10) are equivalent to compliance with the Kirchhoff-Love hypothe- 
sis in the zero-th and first approximations. 

4. Let us now obtain the differential equations for use(‘), ~a~(“‘, vYo(o). Let us insert 
(2) (2.6) for aoY (2) 

’ @PY (2) into conditions (3.2), and then let us eliminate ~a$‘, ’ *YY 

Q&)’ qyo (2). We hence obtain three relationships 

- (f;+2 - C,_? ‘Tur(22) - 2 cc+” - P_3) oy$f = 
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where the operator L(va,,fo), vpoCo)) is 

Substituting (4.3) into (4.1) and (4.2). 
(0) (0) we obtain three differential equations in wao, “~0, 

“,‘z’. When the coordinate plane is disposed arbitrarily, all the unknowns enter into each of 

Eqs. (4.1) and (4.2). If the coordinate plane UP coincides with the middle plane of the plate 

then the bending and the generalized lane stress problems are separated. This is connec- 

ted with the fact that the quantity [+ !-r_’ vanishes in this case, only one unknown vpo) 

will remain in (4.1). and only the unknowns d:forOb and v&)in (4.2). 

Henceforth, in considering a homogeneous plate we shall always assume that the coor 
dinate plane CL/~ coincides with its middle plane. In a zero-th approximation the bending eq- 
uations are 

+ + 
a (H,Q-1 .Jll (4.5) 

and the equations of generalized plane stress are of the form: 

1 1 
L(z$), -- upJo = - EeX+3 2 Pa+ - Ta-) (0) (4.6) 

We have homogeneous boundary conditions with c= f 1 for the first approximation. Hence, 
the bending and generalized plane stress equations are also homogeneous, i.e. 

VVVYO 
(1) = 0 

(4.7) 

L [UJ”, “Bo(l)) = 0 Cd) (4.8) 

To obtain the bending and generalized plane stress equations in an s-tb approximation, 
it is net ssary ;t;zye f$~2~oundary conditions for this approximation with [= f 1, to elimin- 

(a t 2)8 
ate LT ayo * Opyo v ayyo * and to express the remaining quantities in these conditions in 

terms of J’) a0 ’ “/Jo”‘, “$?tj and in terms of values of the preceding approximations (which we 

consider known). 

In an arbitrary orthogonal curvilinear coordinate system the bending problem in each ap 
proximation reduces to the solution of a biharmonic equation of the form: 

0) for even s 
VVOYO 

= p (4 = Vs12 (wl + b,qz) 
Y 

0 for oao s 

where 

(4.9) 

(4.10) 

Here V./z denotes the polyhannonic operator of order s/2. Values of u., b, have been 

obtained for a = 0, 2, 4 and 6. They are 

a, = s/1 (1 + Y) (1 - Y), b,, = 0 

a* = - So (1 + Y) Y8 - 3v), bs = ‘/a (I + v) (2 - v) 
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a4 = - ‘,‘nm (1 + v) (227-157 Y), b, = ‘/zo (1 + v) (1 - Y) (4.11) 

~6 = -‘/mooo (1 + y) (26-791 Y), b, = - 1/~400 (1 + Y) (16 + 1%) 

Values of a*, b, for s = 0, 2 had been obtained earlier [2]. 

The problem of the generalized plane stress reduces in each approximation to integra- 

tion of the system of equations 

L (“a/S). UpJS)) = &@) (EB) (4.12) 

The right sides of these equations have been obtained for the first four approximations. 

They are of the form: 

5. The states of stress for which the expansions (2.2) and (2.3) hold correspond to the 

asymptotic solution (1.3) of the Lam6 equations. Hence, these states of stress are possibIe 

in a thin elastic layer. It has been shown above that a state of stress arises in a plate sub- 
ject to an arbitrary surface loading, for which the expansions (2.2) will hold while the first 

two terms in the expansions (2.3) will vanish, in other words, the expansions (2.2) and (2.3) 

will hold for so = 2. But in addition to such a state of stress, states of stress are possible 

in a thin layer for which there will hold: (a) expansions (2.2) and (2.3) with so = 1 and (b) 

expansions (2.2) and (2.3) with so = 0. Let us analyze each of the mentioned states of stress. 

For the state of stress A to which the expansions (2.2) and (2.3) with so = 2 correspond, 

it is characteristic that 
1) The Kirchhoff-Love hypothesis is satisfied in the zero-th and first approximations; 

2) The stresses oqo, crpp, aop are the largest; the stresses UV, UP? are one order, 

and the normal stressescrY,, two orders less than the fundamental stresses; 

3) In a zero approximation the bending problem reduces to solving the customary equation 
(01 

of classical plate bending theory and determination of u:o’, npo reduces to the solution of 

the customary equations of the generalized plane state of stress. 

The state of stress B which corresponds to the expansions (2.2) and (2.3) with so = 1, 

has the following properties: 
1) The Kirchhoff-Love hypothesis is satisfied only in a first approximations; 

2) The stresses oz,,’ @jr are of the same order as cast ‘JP~, @ofi and the stresses cry,, 

are an order less; 
3) In a zero-th approximation the former stresses are constant over the layer thickness. 

The state of stress C corresponding to the expansions (2.2) and (2.3) with so = 0 is 

characterized by the fact that: 
1) The Kirchhoff-Love hypothesis does not hold even in the zero-th approximation; 

2) The stresses ooy, UB~ ar e the largest; the remaining stresses crorv asp, oap, CT,,,, , /, 
are of an order less; 

3) In the zero-th and first approximations the former stresses are constant over the layer 

thickness. This means that the Reissner hypothesis 143 is satisfied in the zero-th and first 

approximations for the considered state of stress. 
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The last two states of stress differ radically from the state of stress originating in a 

homogeneous plate subjected to arbitrary loading. It tams out that these states of stress in 
weak layers of laminated plates for which the ratio between the elastic moduli of the weak 
and stiff layers is commensurate with the relative thickness of the plate or with its square. 

Let us illustrate this by the example of a sandwich plate. 
Let us first consider a sandwich plate for which the ratio between the elastic modulus 

of the filler E, and the elastic modulus of the stiff layers E, is commensurate with the re- 

lative thickness of the plate. The solution of the Lamd equations in both the domain occu- 
pied by the filler and the domains occupied by the stiff layers will be sought in the form 

(1.31. 
Analyzing the possibility of complying with the boundary conditions on the upper and 

lower planes of the laminated plate, and with the static conditions of the combination of 
layers, we arrive at the deduction that the state of stress A corresponding to expansions 
(2.2) and (2.3) with s = 2 originates in the stiff layers, and the state of stress B corres- 
ponding to (2.2) and P 2.3) with su = 1 in the filler. This means that the same asymptotic be- 
havior holds in the stiff layers as has been considered in Sections 3 and 4, and an essen- 
tially different state of stress is produced in the filler. Let us analyze the state of stress 
in the filler in greater detail. Among the zero-th approximation quantities are the following 

v (O), Vi3 
CO), v (W, a (0) (0) (0) (1) 

Y OIX * %Q ’ *ap, 1 %y ’ spy (1) 
a 

Cl), ,$ yy 
for which (3.4) and (3.7) with the six arbitrary functions: 

hold. 
Six geometric and six static matching conditions should be satisfied on the contact 

planes between the filler and the stiff layers. From these conditions we obtain twelve mat- 
ching conditions for each approximation. 

First we consider the zero& approximation. Eliminating the six arbitrary functions (5.1) 
from the twelve matching conditions, we obtain six relationships between the zero-th appro- 
ximation quantities for the stiff layers. We designate these relationships the compatibility 
conditions of the stiff layers in the zero-th approximation, The compatibility conditions of 
the stiff layers for the successive approximations are similarly obtained. 

Let us now consider a sandwich plate for which the ratio Et/E, is commensurate with 

the square of the relative thickness. Elucidating the possibility of complying with the boun- 
dary conditions on the upper and lower planes of a laminated plate and with the static con- 
ditions of the compatibility of layers, we arrive at the deduction that the state of stress A 
corresponding to (2.2) and (2.3) with s 

3 

= 2 holds, as before, in the stiff layers, while the 
state of stress C corresponding to (2.2 and (2.3) with so = 0 holds in the filler. Hence, the 

following quantities: 

v (f-v, 
OL 

v w, v 69, 
B Y 

Q aa( $6 ON, Q (O), (J CO), 6 CO), (J (0) 
ap ay BY YY ’ 

for which (3.4) and (3.5) containing the six arbitrary functions 

hold, refer to the zero-th approximation for the filler. 
Eliminating these arbitrary functions from the twe lve compatibility conditions for the 

layers in the zero-th approximation, we obtain six matching conditions for the stiff layers 
in the zero-th approximation. 

In the problem of deformation of a sandwich plate, the matching conditions of the stiff 
layers permit elimination of the filler from the considerations. After the states of stress and 
strain in the stiff layers have been constructed, the determination of the displacements and 
stresses in the filler is associated only with the performance of algebraic operations and 
differentiation (without solving the differential equations). 
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